

Climate Adaptation for the Built Environment

Herefordshire & Worcestershire Constructing Excellence (HAWCE)

Bethany Haskins-Vaheesan & Mike Webb WMCA

What is climate risk and adaptation?

Latest News (13th March 2024)

"The evidence of the damage from climate change has never been clearer, but the UK's current approach to adaptation is not working....."

Baroness Brown, Chair of the Adaptation Committee

Climate change & its impacts

- Under current policies and actions by the end of this century warming will be as high as 2.9C.
- Increasingly hotter, drier summers & warmer, wetter winters + more extreme weather events.
- Climate change focus has been on net zero & carbon reductions.
- Increasing importance on the need for adapting to climate risks and opportunities.

Summer 🗱 Winter

The hottest summer day in the 30 years from 1991 to 2019 near you was **34.1C**. If global average temperatures increase 2C above pre-industrial levels, the hottest summer day could be about **36.5C**. If global temperatures rise by 4C, it could be about **41C**.

Climate Impacts facing the West Midlands

Climate Risk & Vulnerability Assessment (CRVA) mapping

Х

A combination of the following data at 100x100m resolution:

- Air pollutant concentration (nitrogen dioxide)
- Fine particulate matter concentration
- Surface water flood risk
- Flood risk from rivers
- Lack of large, open green space
- Lack of other green spaces (e.g. gardens)
- Lack of cover and shading from trees
- Average summer surface temperature
- · Building form, height and density

RISK =

Vulnerability

A combination of the following data at 100x100m resolution:

- Household deprivation by employment
- Household deprivation by education
- Household deprivation by health & disability
- Household deprivation by housing
- Population of minority ethnicity
- Population whose main language is not English
- Households with dependent children under 15 years of age
- Households of single occupancy over 65 years of age
- Households with no access to a car or van
- Households who do not own their property outright
- Average annual salary
- Average net disposable income
- Average % of income that is disposable
- Average % of income spent on travel to work

Exposure

The following data at 100x100m resolution:

Population density

Χ

Climate Risk & Vulnerability Assessment (CRVA) mapping

This is a draft and may be subject to change

Examples of impacts already being felt ...

Drought in Edgbaston Reservoir (2018)

Flooding and a stranded resident in Alum Rock, East Birmingham (2019)

Flooding in Catherine de Barnes, Solihull,

from Storm Dennis (2020)

Walsall Manor hospital flooding (2020)

2023 – Flooding in Evesham

The Adaptation Process

- Current vulnerability a baseline assessment
- Future vulnerability assess risks under specified timelines (2030 & 2080) and warming scenarios (2C & 4C)
- Adaptation options risk thresholds, cost-effectiveness, co-benefits, material performance
- Monitoring & evaluation responsibility, maintenance, metrics and indicators

Climate adapted and resilient building stock & construction

Risks to building fabric from moisture, wind and driving rain

- Deliver more proactive measures
 - A measurement of indoor environmental quality
 - Predictions of risks like subsidence
 - ➢ Siting
 - > Orientation
 - design and materials should be given ahead of construction.
- Integrated design of energy efficiency, overheating prevention and ventilation for new builds.

Source: CCRA3-Briefing-Housing.pdf (ukclimaterisk.org)

Risks to people, communities and buildings from flooding

- Understand at-risk areas
- Is risk and mitigation information publicly available?
- Justification for and costsavings from Sustainable
 Drainage System (SuDS)
- Changes to water tables affect excavation, tunnelling and flood risk.

Risks to health and wellbeing from high temperatures

Combined decarbonisation stra

decarbonisation strategies with adaptation measures

- Prioritise green infrastructure
- Educational work for building owners and users

Further considerations: risks to construction

- Supply chain disruptions
- Utility dependencies water and energy shortages
 - Workforce disruptions and safety
- Market changes prices of materials and insurance

Climate adapted and resilient building stock

Passive heating/cooling:

- Reflective walls and rooves
- Indoor window treatments: curtains, blinds
- Cool flooring (timber)
- External shading: shutters, overhangs, trees & vegetation
- Thermal wall and loft insultation
- Communal heating systems: pipe insulation, ventilation of service voids
- Behaviour change: opening of windows, use of 'cool rooms'

Active heating/cooling:

- Mechanical ventilation
- Ceiling fans
- Air conditioning units

Nature-based solutions:

- Sustainable urban drainage systems (SuDS)
- Tree and vegetation planting
- Greening rooftops

Guidance & Resources

Implementation of adaptation in the building sector

Different stakeholders have different responsibilities and requirements as we transition to deliver more resilient buildings.

- Designers & architects
- Local authorities
- Asset owners
- > Developers
- > Insurers
- Investment community

How to Assess Physical Risks in the Built Environment

Practical course supporting participants with the measuring and reporting of climate-related physical risks to built assets

Cineta Charga Adaptetori (Physical Rok) (Realiant Builderga) (Corta)

Book course 7

Nature-based solutions (NBS) for the built environment

Street Trees

Trees

Street trees / SuDS-enabled Reduction in surrounding air temperature

Street trees Rainwater runoff retention

Street trees

NO2 removed per tree annually

PM10 removed per tree annually

Street trees Carbon sequestered per tree annually

Street trees Carbon storage capacity per tree

Street Trees

West Midlands iTree Survey

- Over 2000 sample plots
- Estimated to be 4,918,000 trees
- 14.4% canopy cover
- English Oak (8.36%), Silver Birch (7.76%), Ash (7.19%)

WMCA's Ecosystem Services Headline Figures		
Total Carbon Storage	1,912,000 tonnes	£1.86 billion
Annual Carbon Sequestration	57,620 tonnes	£55,980,000
Annual Pollution Removal	206 tonnes	£14,965,000
Annual Avoided Runoff	1,551,000 m ³	£2,501,000
Total Annual Benefits	£73,446,000	

reenei

Not all equal though

- Central Birmingham 2% canopy cover
- Edgbaston 37% canopy cover
- Typically, those places with low canopy cover are most deprived

Tree equity in Worcester

Warndon village 26% canopy cover -1.85°C heat disparity

City Centre 4% canopy cover

1.71 °C heat disparity

Greenspaces

Urban parks and green spaces

- Providing recreation space.
- Value increase of properties in the vicinity.
- Counteracting the Urban Heat Island Effect, helping to naturally prevent urban space from overheating.

.01kg

.2kg

Annual rainfall infiltrated

West Midlands **Combined Authority**

19

Wellbeing

- Can reduce airborne particulate matter by between 9% and 24%
- Can cool an urban area by 2-3°C
- Hospital patients with a view of trees recover quicker and need fewer painkillers
- Workers who can see nature while working take less sick leave, and have greater job satisfaction, according to <u>a 2020 report by Business in the Community</u>.
 - Employees take fewer sick days The research showed a 23% decrease in sick leave taken by employees with a view of nature - that's an average of 11 hours less sick leave per year than employees with no view. This equates to an average annual saving of around £1,600 per employee.
 - Increased productivity call centre workers with a view of nature handle calls 6-7% faster than those with no view. This generates annual productivity savings of around £2,400 per employee

Making the case

Meeting targets

- Contribution to Local policies and plans
- Double up as BNG units

Cost saving

- Reducing running costs (energy for heating cooling)
- Avoiding need for expensive water infrastructure renewal/upgrade

Some insights taken from the evidence of NBS generating local economic growth:

10-50%

30-50% Increase in restaurant patronage due to street trees⁴¹

<u>,</u> <u></u>

Increase in commercial trading rates after investment in well planned green space⁴²

Increase in willingness to pay for products associated with high green cover⁴³

50% of park visitors visit a local business before or after their visit⁴⁴

Recognising the value of NBS (Business Case)

Land and property value

Green walls

Living wall / Green façade

Increase in property value

Trees

Street Trees / SuDS-enabled

2.5%

Increase in property value Increase in rental value

6.15%

Green space

Increase in property value when in direct or close proximity to a park Increase in rental value

9.5%

Extensive < 150mm / Intensive > 150mm

Increase in property value for non-accessible green roof Increase in property value for accessible green roof

2.9%

6.9%

SuDS

Increase in property value when a small blue space within 200m of a property

West Midlands Combined Authority

Increase in property value when a large blue space close to the property

△ 3.69

3.6%

Just imagine...

Thank you for listening

Thank you for listening.

For further information:

- Visit <u>www.wmca.org.uk/adaptation</u>
- Or contact: <u>bethany.Haskins@wmca.org.uk</u> or <u>mike.webb@wmca.org.uk</u>

